午夜亚洲av中文字字幕乱码,一级日本大片免费观看,欧美牲交a欧美牲交一级aa,亚州熟妇视频无码

活性氧在采后果蔬品質(zhì)劣變中的作用及其控制技術(shù)研究進(jìn)展

發(fā)布時(shí)間:2024-11-02
活性氧在采后果蔬品質(zhì)劣變中的作用及其控制技術(shù)研究進(jìn)展
劉竟運(yùn)1,2, 林育釗1, 范中奇1,3, 林藝芬1,3, 林河通1,2
1. 福建農(nóng)林大學(xué)食品科學(xué)學(xué)院, 福建 福州 350002;
2. 亞熱帶特色農(nóng)產(chǎn)品采后生物學(xué)福建省高校重點(diǎn)實(shí)驗(yàn)室, 福建 福州 350002;
3. 福建農(nóng)林大學(xué)農(nóng)產(chǎn)品產(chǎn)后技術(shù)研究所, 福建 福州 350002
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(,31671914);福建農(nóng)林大學(xué)科技創(chuàng)新專項(xiàng)(cxzx2018054,cxzx2016086,cxzx2017284,kf2015051)
摘要:[目的]通過介紹采后果蔬品質(zhì)劣變發(fā)生機(jī)理及其控制技術(shù),為減少采后果蔬品質(zhì)劣變、提高果蔬保鮮效果提供依據(jù)。[方法]歸納總結(jié)國內(nèi)外相關(guān)文獻(xiàn)。
[結(jié)果]綜述了采后果蔬常見的品質(zhì)劣變現(xiàn)象、活性氧在采后果蔬品質(zhì)劣變中的作用機(jī)理以及應(yīng)用外源活性氧清除劑控制采后果蔬品質(zhì)劣變的概況。
[結(jié)論]闡明了活性氧與采后果蔬品質(zhì)劣變發(fā)生的關(guān)系,為減少采后果蔬品質(zhì)劣變、維持采后果蔬貯藏品質(zhì)提供參考。
關(guān)鍵詞:果實(shí) 蔬菜 采后生物學(xué) 品質(zhì)劣變 活性氧 控制技術(shù)
research progress on the role of reactive oxygen species in quality deterioration of harvested fruits and vegetables and its control technologies
liu jingyun1,2ljy, lin yuzhao1, fan zhongqi1,3, lin yifen1,3, lin hetong1,2corresponding author
abstract: [purpose] in order to provide scientific basis for reducing quality deterioration and improving storability of harvested fruits and vegetables, the mechanism and control technology of quality deterioration of postharvest fruits and vegetables were introduced.[method] the pertinent domestic and foreign literatures were reviewed and summarized.[result] the common quality deterioration of postharvest fruits and vegetables, the role of reactive oxygen species (ros) in quality deterioration of postharvest fruits and vegetables, and the application of exogenous ros scavengers to control the quality deterioration of postharvest fruits and vegetables were reviewed.[conclusion] the relationship between ros and quality deterioration of postharvest fruits and vegetables was clarified, which provided a technical reference for reducing the quality deterioration and maintaining storage quality of postharvest fruits and vegetables.
key words: fruits vegetables postharvest biology quality deterioration reactive oxygen species control technology
果蔬采后貯藏期間極易發(fā)生品質(zhì)劣變,降低了果蔬食用品質(zhì)和商品價(jià)值,不利于長期貯藏和跨區(qū)域銷售,從而限制果蔬采后保鮮產(chǎn)業(yè)發(fā)展?;钚匝?reactive oxygen species, ros)、能量虧缺、機(jī)械損傷、冷害、病原菌侵染等因素會(huì)導(dǎo)致采后果蔬品質(zhì)劣變,其中ros代謝失衡被認(rèn)為是影響其劣變發(fā)生的最重要原因之一[1-6]。lin et al[7]研究表明,隨著貯藏時(shí)間的延長,采后龍眼果實(shí)果皮ros水平隨之升高,果皮組織中的ros相關(guān)清除酶活性減弱,果皮褐變指數(shù)不斷提高,表明采后龍眼果皮褐變可能與ros代謝失衡有關(guān)。zhang et al[8]研究認(rèn)為,外源褪黑素處理能夠有效減少采后荔枝果皮的ros積累,并提高ros清除酶活性,從而緩解采后荔枝果皮表面褐變的進(jìn)一步發(fā)生。因此,本文就近年有關(guān)ros代謝在采后果蔬品質(zhì)劣變中的作用及其控制技術(shù)的研究進(jìn)展進(jìn)行綜述,為闡明ros與采后果蔬品質(zhì)劣變發(fā)生的關(guān)系,減少采后果蔬品質(zhì)劣變、維持其貯藏品質(zhì)提供參考。
1 采后果蔬主要品質(zhì)劣變現(xiàn)象
1.1 褐變
酶促褐變是果蔬采后品質(zhì)劣變的常見現(xiàn)象[1]。正常果蔬組織中,與褐變有關(guān)的多酚氧化酶(polyphenol oxidase, ppo)和褐變底物(酚類物質(zhì))在細(xì)胞中呈區(qū)室化分布,這一正常分布狀態(tài)一旦被破壞,ppo則與酚類物質(zhì)直接接觸,從而促進(jìn)酶促反應(yīng),導(dǎo)致果蔬組織中的酚類物質(zhì)被氧化成醌類物質(zhì),醌類物質(zhì)進(jìn)一步聚合,誘發(fā)采后果蔬組織褐變[1, 4, 9-10]。褐變的發(fā)生影響果蔬外觀色澤及品質(zhì),不僅大大降低商品率,還不利于采后果蔬的銷售[1, 11]。王亮等[12]研究發(fā)現(xiàn),聚氯乙烯薄膜(30 μm厚度)包裝的山楂果實(shí)在(0±0.5) ℃下貯藏,貯藏后期山楂果實(shí)的丙二醛(malondialdehyde, mda)含量加速上升,果肉褐變加劇,導(dǎo)致果實(shí)品質(zhì)下降。酶促褐變還影響綠豆芽貯藏保鮮,即在ppo催化作用下,綠豆芽的酚類物質(zhì)經(jīng)氧化、聚合等反應(yīng),形成褐色物質(zhì),導(dǎo)致采后綠豆芽出現(xiàn)褐變[9]。采后龍眼果實(shí)外果皮表面色澤逐漸暗淡、內(nèi)果皮出現(xiàn)褐變斑點(diǎn)等褐變現(xiàn)象,降低其商品價(jià)值,嚴(yán)重影響貯藏與銷售[13]。
1.2 軟化
采后果蔬出現(xiàn)質(zhì)地變軟、硬度下降等軟化現(xiàn)象,導(dǎo)致其不耐貯藏、貨架期短、商品價(jià)值下降[3]。多數(shù)研究認(rèn)為,隨著果膠脂酶(pectinesterase, pe)、多聚半乳糖醛酸酶(polygalacturonase, pg)、β-半乳糖苷酶(β-galactosidase, β-gal)、纖維素酶(cellulase, cx)等細(xì)胞壁降解酶活性的增強(qiáng),果膠物質(zhì)、纖維素、半纖維素等細(xì)胞壁物質(zhì)降解,細(xì)胞壁結(jié)構(gòu)被破壞,從而導(dǎo)致采后果蔬軟化[3, 14-16]。林河通等[5]報(bào)道,采后龍眼果實(shí)果肉自溶過程中,果實(shí)硬度下降,果肉半纖維素、纖維素、原果膠、細(xì)胞壁蛋白等細(xì)胞壁物質(zhì)含量降低,果肉pe活性下降,是pe、pg、cx、β-gal等龍眼果肉細(xì)胞壁降解酶的作用引起細(xì)胞壁物質(zhì)降解所致。sogvar et al[17]研究發(fā)現(xiàn),草莓采后貯藏期出現(xiàn)硬度下降、表面腐爛、色澤變暗等現(xiàn)象,利用蘆薈汁與抗壞血酸混合溶液涂抹其果實(shí)表面,可有效抑制采后草莓失重率的增加,維持果肉較高的可溶性固形物含量和糖酸比,延緩果實(shí)軟化。du et al[18]采用1-甲基環(huán)丙烯(1-methylcyclopropene, 1-mcp)與殺菌劑結(jié)合處理西紅柿,能夠有效延緩采后西紅柿果實(shí)軟化,并抑制病原菌的生長繁殖。gutiérrez et al[19]研究發(fā)現(xiàn),短波紫外線(波長200~280 nm)結(jié)合臭氧處理芝麻菜,可以有效抑制采后芝麻菜軟化及其表面微生物的生長,較好保持芝麻菜商品價(jià)值。
1.3 冷害
冷害是果蔬在冰點(diǎn)(標(biāo)準(zhǔn)大氣壓下,0 ℃)以上溫度貯藏時(shí)發(fā)生的低溫傷害,易發(fā)生在冷敏性果蔬中[20-22]。冷害會(huì)導(dǎo)致果蔬采后品質(zhì)下降、貯藏期縮短。有關(guān)果蔬冷害發(fā)生機(jī)制的研究眾多,大部分認(rèn)為低溫冷害會(huì)導(dǎo)致果蔬細(xì)胞膜結(jié)構(gòu)損傷。果蔬冷害癥狀通常表現(xiàn)為表面凹陷、斑點(diǎn)、褐變,組織局部壞死,無法正常后熟,但不同種類果蔬的冷害癥狀不同。如發(fā)生冷害的香蕉果實(shí)表面呈現(xiàn)褐變斑點(diǎn)、鴨梨果肉出現(xiàn)黑心、桃果肉木質(zhì)化、黃瓜軟化、西葫蘆品質(zhì)快速下降[23-25]。范林林等[26]研究發(fā)現(xiàn),1-mcp處理能有效降低采后西葫蘆乙烯釋放速率和呼吸速率,緩解冷害的發(fā)生。wang et al[21]研究發(fā)現(xiàn),通過提高桃果實(shí)酚類物質(zhì)和糖代謝,可以緩解冷害發(fā)生,延長貯藏期。
1.4 衰老
采后果蔬衰老是內(nèi)外影響因素直接或間接作用下,導(dǎo)致其組織功能日漸衰退,直至死亡的變化過程[18, 27-28]。目前普遍認(rèn)為,ros自由基是果蔬采后衰老的主要機(jī)制。隨著采后果蔬衰老的加劇,果蔬色、香、味、質(zhì)地、營養(yǎng)等都會(huì)發(fā)生一系列不可逆的變化,導(dǎo)致采后果蔬品質(zhì)劣變、商品率降低[27]。劉順枝等[29]報(bào)道,不同貯藏溫度對火龍果采后衰老和貯藏品質(zhì)的影響不同,與15 ℃下貯藏的火龍果相比,5 ℃低溫貯藏能有效延緩采后果實(shí)衰老,較好保持果肉可溶性總糖、可溶性蛋白質(zhì)及vc含量。fan et al[30]研究發(fā)現(xiàn),適宜濃度的茉莉酸甲酯(methyl jasmonate, meja)處理茄子果實(shí),可以有效延緩采后茄子果實(shí)衰老,減緩果實(shí)的果皮花青素降解,減少其果實(shí)失重率和褐變,較好維持果實(shí)貯藏品質(zhì)。
2 ros在采后果蔬品質(zhì)劣變中的作用機(jī)理
2.1 ros產(chǎn)生與清除機(jī)制
ros是高等植物有氧代謝過程中產(chǎn)生的一類氧化能力強(qiáng)、化學(xué)性質(zhì)較活潑的含氧物質(zhì)[1],如羥自由基(·oh)、超氧陰離子自由基(o2·)、單線態(tài)氧(1o2)以及h2o2等。ros清除酶和內(nèi)源抗氧化物質(zhì)共同組成ros清除系統(tǒng)。ros清除酶主要有:超氧化物歧化酶(superoxide dismutase, sod)、抗壞血酸過氧化物酶(ascorbate peroxidase, apx)、過氧化氫酶(catalase, cat)、單脫氫抗壞血酸還原酶(monodehydroascorbic acid reductase, mdhar)、脫氫抗壞血酸還原酶(dehydroascorbic acid reductase, dhar)、還原酶(glutathione reductase, gr)等[1]。內(nèi)源抗氧化物質(zhì)有還原型抗壞血酸(reduced ascorbic acid, asa)、還原型(reduced glutathione, gsh)、ve、類胡蘿卜素、類黃酮等[1, 31]。
正常情況下,在ros清除酶和內(nèi)源抗氧化物質(zhì)的共同作用下,果蔬體內(nèi)產(chǎn)生的ros能夠得到及時(shí)清除,使得ros產(chǎn)生與清除處于平衡狀態(tài),避免其對果蔬產(chǎn)生傷害;但在衰老、失水、冷害、病原菌侵染等逆境脅迫下,采后果蔬體內(nèi)ros清除能力下降,ros產(chǎn)生與清除失去平衡,導(dǎo)致果蔬體內(nèi)積累過多的ros,進(jìn)而加速其采后衰老[1]、冷害[1]、褐變[4, 6, 8]、果肉軟化[31-32]、果肉自溶[5]等品質(zhì)劣變發(fā)生。lin et al[7]研究發(fā)現(xiàn),與對照組龍眼果實(shí)相比,h2o2處理降低了龍眼果皮cat、sod、gr、apx等ros清除酶活性和gsh、asa等內(nèi)源抗氧化物質(zhì)含量,提高了果皮o2·產(chǎn)生速率、mda含量、ppo活性以及細(xì)胞膜相對滲透率,最終加劇了采后龍眼果實(shí)酶促褐變的發(fā)生,由此推測,h2o2所致采后龍眼果實(shí)果皮褐變與h2o2引起龍眼果皮細(xì)胞ros代謝失調(diào)、細(xì)胞膜結(jié)構(gòu)破壞有關(guān)。林藝芬[6]研究表明,外源ros清除劑gsh、asa、棓酸丙酯處理可以及時(shí)清除龍眼果皮中積累的ros,維護(hù)果皮細(xì)胞膜結(jié)構(gòu)的完整性,從而抑制采后品質(zhì)劣變的發(fā)生。王慧等[31]、wang et al[32]認(rèn)為,采后安溪油柿果實(shí)衰老、果肉軟化與ros代謝失調(diào)有關(guān),而1-mcp處理能降低果實(shí)ros積累、抑制膜脂過氧化作用、延緩果實(shí)細(xì)胞膜透性增加,從而有效延緩果實(shí)衰老、果肉軟化,這與1-mcp處理可維持較高的sod、cat、apx等ros清除酶活性和gsh、asa含量,提高其ros清除能力有關(guān)。
2.2 ros與呼吸代謝的關(guān)系
磷酸己糖異構(gòu)酶(phosphohexose isomerase, pgi)、琥珀酸脫氫酶(succinate dehydrogenase, sdh)是植物糖酵解(meyerhof-parnas pathway, emp)—三羧酸循環(huán)(tricarboxylic acid cycle, tca)呼吸代謝途徑關(guān)鍵酶,氧化酶(cytochrome c oxidase, cco)、抗壞血酸氧化酶(ascorbic acid oxidase, aao)和ppo是重要的呼吸末端氧化酶,6-磷酸葡萄糖脫氫酶(glucose-6-phosphate dehydrogenase, g-6-pdh)和6-磷酸葡萄糖酸脫氫酶(6-phosphogluconate dehydrogenase, 6-pgdh)是呼吸代謝磷酸戊糖途徑(pentose phosphate pathway, ppp)的關(guān)鍵酶[33-35]。植物細(xì)胞中吡啶核苷酸包括腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate, nadp)、腺嘌呤二核苷酸(nicotinamide adenine dinucleotide, nad)、還原型腺嘌呤二核苷酸(reduced form of nicotinamide adenine dinucleotide, nadh)、還原型腺嘌呤二核苷酸磷酸(reduced form of nicotinamide adenine dinucleotide phosphate, nadph)[33]。腺嘌呤二核苷酸激酶(nicotinamide adenine dinucleotide kinase, nadk)是促進(jìn)nadp生成的酶,在atp的參與下,nad在nadk的作用下磷酸化生成nadp[34-35]。植物細(xì)胞中的吡啶核苷酸參與呼吸代謝和電子傳遞等過程[35]。nadp主要參與ppp呼吸代謝途徑,而nad則主要參與emp-tca呼吸代謝途徑[33, 35]。因此,可以從g-6-pdh、6-pgdh、pgi、sdh、cco、aao、ppo等酶活性以及nad、nadp含量的變化規(guī)律來推測植物呼吸代謝途徑及其變化規(guī)律。
果蔬通過呼吸代謝產(chǎn)生能量以滿足自身基本生理代謝需求。然而,隨著采后果蔬呼吸作用的持續(xù)進(jìn)行,果蔬體內(nèi)糖類物質(zhì)的大量消耗導(dǎo)致其營養(yǎng)物質(zhì)含量降低、口感變差。ros引起的采后果蔬衰老、冷害、褐變、果肉軟化及自溶等品質(zhì)劣變與呼吸代謝紊亂、呼吸代謝途徑相關(guān)酶活性及吡啶核苷酸含量的變化關(guān)系密切[27, 33]。林毅雄等[36]報(bào)道,與對照龍眼果實(shí)相比,h2o2處理會(huì)提高采后龍眼果實(shí)呼吸強(qiáng)度,降低龍眼果肉vc、蔗糖、總糖等營養(yǎng)物質(zhì)含量,促進(jìn)果肉軟化及自溶和果皮褐變發(fā)生,降低龍眼果實(shí)貯藏品質(zhì)和商品價(jià)值。lin et al[33]研究發(fā)現(xiàn),經(jīng)h2o2處理的龍眼果實(shí)貯藏期間果皮褐變指數(shù)和果肉自溶指數(shù)較高,且果實(shí)呼吸速率及pgi、sdh、cco、aao和ppo活性均較高,nadk、g-6-pdh+6-pgdh活性以及nadp、nadph含量較低,而nad、nadh含量較高。據(jù)此認(rèn)為,h2o2會(huì)導(dǎo)致采后龍眼果實(shí)品質(zhì)劣變(果肉自溶、果皮褐變),這與h2o2提高采后龍眼果實(shí)呼吸速率,削弱ppp呼吸代謝途徑,增強(qiáng)emp-tca呼吸代謝途徑、細(xì)胞色素途徑(cytochrome pathway, ccp)及cco、aao、ppo等呼吸末端氧化酶活性有關(guān)。劉佩等[37]研究ros代謝失調(diào)與采后‘黃冠’梨果皮褐變的關(guān)系,發(fā)現(xiàn)采后ros的積累可顯著提高‘黃冠’梨果實(shí)呼吸強(qiáng)度,降低果實(shí)硬度及果肉總可溶性固形物含量,促進(jìn)果皮褐變進(jìn)程,降低果實(shí)貯藏品質(zhì)。
2.3 ros與生物膜穩(wěn)定性的關(guān)系
生物膜具有一定的流動(dòng)性和功能性,在維持采后果蔬品質(zhì)上起重要作用。生物膜的穩(wěn)定性取決于膜脂降解酶活性、磷脂組分、膜脂脂肪酸組分及含量等因素。而生物膜結(jié)構(gòu)的破壞則會(huì)促進(jìn)細(xì)胞的衰老和死亡。因此,維持生物膜穩(wěn)定性對保持采后果蔬貯藏品質(zhì)具有重要意義[38]。膜脂過氧化作用會(huì)降低果蔬細(xì)胞膜脂不飽和脂肪酸含量、脂肪酸不飽和指數(shù)和脂肪酸不飽和度,破壞細(xì)胞膜結(jié)構(gòu),從而影響細(xì)胞膜功能。與此同時(shí),膜脂過氧化反應(yīng)產(chǎn)物,如ros、mda、氧自由基等,將進(jìn)一步毒害細(xì)胞,進(jìn)而破壞細(xì)胞膜結(jié)構(gòu)。
采后果蔬衰老[1]、冷害[39-40]、褐變[4, 6, 8, 41]、果肉軟化[31-32]、果肉自溶[5, 42]等品質(zhì)劣變與ros及生物膜穩(wěn)定性密切相關(guān)。孔祥佳等[39-40]研究發(fā)現(xiàn),橄欖果實(shí)在(2±1) ℃下貯藏,隨貯藏時(shí)間的延長,其冷害指數(shù)、褐變指數(shù)、o2·產(chǎn)生速率、mda含量提高,果實(shí)細(xì)胞膜相對滲透率快速上升,脂氧合酶(lipoxygenase, lox)活性上升,棕櫚油酸、、亞麻酸等膜脂不飽和脂肪酸含量以及膜脂脂肪酸不飽和度下降,但肉豆蔻酸、棕櫚酸、硬脂酸等膜脂飽和脂肪酸含量上升。據(jù)此認(rèn)為,采后橄欖果實(shí)貯藏期冷害發(fā)生與ros代謝失調(diào)導(dǎo)致ros積累、lox活性增加,促進(jìn)橄欖果實(shí)細(xì)胞膜脂降解,破壞橄欖果實(shí)細(xì)胞膜結(jié)構(gòu)完整性有關(guān)。此外,與對照龍眼果實(shí)比較,經(jīng)h2o2處理的龍眼果實(shí)貯藏期間果皮褐變指數(shù)、果肉自溶指數(shù)、細(xì)胞膜相對滲透率較高,磷脂酶d(phospholipase d, pld)、脂肪酶(lipase)和lox等膜脂降解酶活性及磷脂酸(phosphatidic acid, pa)和飽和脂肪酸(saturated fatty acids, sfas)含量均較高,而磷脂酰(phosphatidylcholine, pc)、磷脂酰肌醇(phosphatidylinositol, pi)和不飽和脂肪酸(unsaturated fatty acids, usfas)含量以及膜脂脂肪酸不飽和指數(shù)(index of unsaturated fatty acids, iufa)和不飽和度則較低[41-42]。因此,采后龍眼果實(shí)品質(zhì)劣變(果肉軟化、自溶及果皮褐變)與h2o2引起膜脂降解相關(guān)酶活性提高,促進(jìn)細(xì)胞膜不飽和脂肪酸和磷脂的分解,最終導(dǎo)致細(xì)胞膜結(jié)構(gòu)的破壞有關(guān)。sabban-amin et al[43]研究發(fā)現(xiàn),1-mcp預(yù)處理可以提高采后蘋果的ros清除能力,減少ros積累,較好保持采后蘋果貯藏品質(zhì)。
2.4 ros代謝與能量水平的關(guān)系
作為一個(gè)有機(jī)體,采后果蔬體內(nèi)仍存在正常生理代謝。研究表明,能量虧缺與采后果蔬衰老[1, 27, 44-45]、冷害[39-40]、褐變[4, 6, 8, 41, 46]、果肉軟化[31-32]、果肉自溶[47]等品質(zhì)劣變密切相關(guān),較高的atp含量及能荷水平對維持采后果蔬品質(zhì)、延緩衰老進(jìn)程具有重要意義[1]。lin et al[47]研究發(fā)現(xiàn),與對照組龍眼果實(shí)相比,經(jīng)h2o2處理的龍眼果實(shí)貯藏期間果肉自溶指數(shù)較高,果肉atp、adp含量和能荷值較低,線粒體膜、液泡膜和質(zhì)膜mg2+-atpase、ca2+-atpase、h+-atpase活性較低。因此,龍眼果實(shí)采后果肉自溶發(fā)生與atpase活性下降及能量虧缺有關(guān)。此外,朱立保等[48]報(bào)道,蕓苔素內(nèi)酯(brassinolide, br)處理能有效延緩甜瓜衰老,提高甜瓜ros清除能力,減少ros積累,保持甜瓜較高的能量水平。
3 ros清除劑控制采后果蔬品質(zhì)劣變
ros清除劑通過維持采后果蔬ros清除系統(tǒng)的穩(wěn)定性,將ros代謝維持在一個(gè)相對平衡的狀態(tài),從而減少果蔬采后品質(zhì)劣變,延長貯藏保鮮期。用于采后果蔬保鮮的外源ros清除劑必須是無毒、無害,且不與果蔬體內(nèi)物質(zhì)發(fā)生反應(yīng)而產(chǎn)生對人體健康有潛在危害的物質(zhì)。目前采后果蔬保鮮常用的外源ros清除劑有:asa、gsh、棓酸丙酯、l-半等。通過外源ros清除劑調(diào)控果蔬體內(nèi)ros代謝平衡,以降低采后果蔬呼吸作用和膜脂過氧化水平,維持較高的生物膜穩(wěn)定性以及能量水平,從而達(dá)到延緩采后果蔬品質(zhì)劣變的目的。
song et al[49]研究發(fā)現(xiàn),外源asa處理可以及時(shí)清除荸薺果肉ros,延緩果肉表面黃化,保持荸薺貯藏品質(zhì)和商品價(jià)值。martínez-ortiz et al[50]以抗性淀粉為基底,將外源asa做成微膠囊狀,均勻涂抹在采后番石榴果實(shí)表面,發(fā)現(xiàn)該處理可有效降低采后番石榴果實(shí)呼吸速率和失重率,保持較高的硬度和果肉tss含量,較好地維持果實(shí)外觀色澤和貯藏品質(zhì)。此外,外源asa對采后龍眼[5]、草莓[17]、柑橘[51]、香蕉[52]、蘑菇[53]、胡蘿卜[54]等果蔬品質(zhì)劣變也有較好的控制效果。棓酸丙酯在采后果蔬保鮮上的應(yīng)用也較為廣泛[5, 55-57]。林藝芬等[56]報(bào)道,5 mmol·l-1棓酸丙酯處理能有效控制采后龍眼果實(shí)的果皮褐變與果肉自溶,保持較高的果肉vc、蔗糖等營養(yǎng)物質(zhì)含量,較好維持果實(shí)貯藏品質(zhì)。李漢良[57]研究認(rèn)為,棓酸丙酯處理可以有效延緩采后新高梨果實(shí)軟化和褐變的發(fā)生。莫億偉等[58]研究表明,外源gsh處理可以提高采后荔枝果實(shí)ros清除酶活性,減少ros過度積累,維持較高的果肉vc含量,從而達(dá)到延緩果實(shí)品質(zhì)劣變、延長保鮮期的目的。li et al[59]研究報(bào)道,l-半處理能有效降低采后龍眼果實(shí)的果肉自溶指數(shù)和h2o2含量,降低果肉pld、lox等膜脂降解相關(guān)酶活性,從而減緩果肉膜脂氧化反應(yīng),達(dá)到延緩果實(shí)衰老、保持貯藏品質(zhì)的目的。
近年來,國內(nèi)外也開發(fā)了安全且具有ros清除功能的天然植物提取物(蘋果多酚、茶多酚、原花青素等),用于控制采后果蔬品質(zhì)劣變,延長保鮮期[60-65]。tappi et al[60]報(bào)道,綠茶多酚提取物處理可以顯著提高鮮切蘋果片的抗氧化性能,有利于保持鮮切蘋果片的營養(yǎng)品質(zhì)。shao et al[61]通過制備茶多酚—支鏈淀粉—羧甲基纖維素(cmc)納米纖維(pul-cmc-tp納米纖維),并應(yīng)用于草莓保鮮試驗(yàn),發(fā)現(xiàn)pul-cmc-tp納米纖維能夠減少采后草莓果實(shí)失重,較好維持果實(shí)硬度和品質(zhì),延長貨架期。lan et al[62]研究表明,抗菌/茶多酚(pva/tp)復(fù)合膜處理能夠有效降低采后草莓果實(shí)失重和腐爛,維持較高的果實(shí)硬度、可溶性固形物和可滴定酸含量,較好維持草莓果實(shí)外觀顏色,有效延長保鮮期。此外,su et al[63]、zhang et al[64]報(bào)道,蘋果多酚處理可延緩采后荔枝果實(shí)衰老、抑制荔枝果皮褐變、提高荔枝果肉的抗氧化活性,較好保持采后荔枝果實(shí)營養(yǎng)品質(zhì)和食用品質(zhì),認(rèn)為蘋果多酚可能是維持采后荔枝果實(shí)風(fēng)味和營養(yǎng)品質(zhì)的一種有效的采后保鮮方式。chen et al[65]研究認(rèn)為,外源原花青素處理可通過增強(qiáng)采后香蕉果實(shí)的抗氧化反應(yīng)、維持較高的體內(nèi)原花青素含量、減少ros水平,從而延遲香蕉果實(shí)的后熟衰老和軟化,較好維持采后香蕉果實(shí)的新鮮度。
4 小結(jié)與展望
ros的過度積累、相關(guān)內(nèi)源抗氧化物質(zhì)含量和ros清除酶活性下降,會(huì)直接導(dǎo)致采后果蔬ros代謝失衡。而ros代謝失衡加劇會(huì)導(dǎo)致采后果蔬呼吸代謝紊亂、生物膜功能喪失、能量供應(yīng)不足等,進(jìn)而引起采后果蔬品質(zhì)劣變,嚴(yán)重影響其貯藏保鮮和銷售。通過調(diào)控采后果蔬ros代謝平衡,能提高果蔬清除ros能力,保持較高的采后果蔬貯藏品質(zhì),減少因采后品質(zhì)劣變所造成的不必要經(jīng)濟(jì)損失,這對促進(jìn)我國采后果蔬保鮮業(yè)發(fā)展具有重要意義。
關(guān)于ros在采后果蔬品質(zhì)劣變中的作用及其調(diào)控研究,目前仍然是國際果蔬采后生物學(xué)的研究熱點(diǎn)。隨著研究技術(shù)和分子生物科學(xué)的發(fā)展,可以從以下方面進(jìn)行更加深入的研究,如通過加大新型ros清除劑的開發(fā)、利用物理或化學(xué)等技術(shù)手段對已有ros清除劑進(jìn)行優(yōu)化改良、將單一的ros清除劑處理與其他保鮮手段相結(jié)合、利用基因工程技術(shù)對ros代謝相關(guān)基因進(jìn)行修飾等方式,以及基于ros代謝調(diào)控果蔬采后品質(zhì)劣變機(jī)理等方面,這對果蔬采后貯藏保鮮新技術(shù)的開發(fā)及應(yīng)用具有重要意義。
參考文獻(xiàn)(references)
[1] 林河通, 席玙芳, 陳紹軍. 果實(shí)貯藏期間的酶促褐變[j]. 福州大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 30(s1): 696–703.
[2] 單婷婷, 林育釗, 林毅雄, 等. 龍眼果實(shí)采后保鮮技術(shù)研究進(jìn)展[j]. 亞熱帶農(nóng)業(yè)研究, 2017, 13(2): 139–143.
[3] 鄭秋萍, 林育釗, 李美玲, 等. 果實(shí)采后軟化的影響因素及抑制技術(shù)研究進(jìn)展[j]. 亞熱帶農(nóng)業(yè)研究, 2019, 15(4): 262–270.
[4] sun j z, lin h t, zhang s, et al. the roles of ros production-scavenging system in lasiodiplodia theobromae (pat.) griff. & maubl. -induced pericarp browning and disease development of harvested longan fruit[j]. food chemistry, 2018, 247: 16–22. doi: 10.1016/j.foodchem.2017.12.017
[5] 林河通, 趙云峰, 席玙芳. 龍眼果實(shí)采后果肉自溶過程中細(xì)胞壁組分及其降解酶活性的變化[j]. 植物生理與分子生物學(xué)學(xué)報(bào), 2007, 33(2): 137–145.
[6] 林藝芬.活性氧引起采后龍眼果實(shí)果皮褐變的生理生化機(jī)制研究[d].福州: 福建農(nóng)林大學(xué), 2013.
[7] lin y f, lin h t, zhang s, et al. the role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit[j]. postharvest biology and technology, 2014, 96: 42–48. doi: 10.1016/j.postharvbio.2014.05.001
[8] zhang y y, huber d j, hu m j, et al. melatonin delays postharvest browning in litchi fruit by enhancing anti-oxidative processes and oxidation repair[j]. journal of agricultural and food chemistry, 2018, 66(28): 7475–7484. doi: 10.1021/acs.jafc.8b01922
[9] sikora m, s'wieca m. effect of ascorbic acid postharvest treatment on enzymatic browning, phenolics and antioxidant capacity of stored mung bean sprouts[j]. food chemistry, 2018, 239: 1160–1166. doi: 10.1016/j.foodchem.2017.07.067
[10] 弓志青, 王文亮. 果蔬采后酶促褐變機(jī)理及影響褐變的因素研究進(jìn)展[j]. 中國食物與營養(yǎng), 2012, 18(2): 30–33. doi: 10.3969/j.issn.1006-9577.2012.02.008
[11] wang h, chen y h, lin h t, et al. phomopsis longanae chi-induced change in ros metabolism and its relation to pericarp browning and disease development of harvested longan fruit[j]. frontiers in microbiology, 2018, 9: 2466. doi: 10.3389/fmicb.2018.02466
[12] 王亮, 趙迎麗, 馮志宏, 等. 薄膜包裝結(jié)合乙烯吸收劑對山楂果實(shí)生理和果肉褐變的影響[j]. 食品科學(xué), 2014, 35(22): 325–329. doi: 10.7506/spkx1002-6630-201422063
[13] 趙云峰, 林河通, 林藝芬, 等. 熱處理延緩采后龍眼果實(shí)果皮褐變及其與酚類物質(zhì)代謝的關(guān)系[j]. 現(xiàn)代食品科技, 2014, 30(5): 218–224.
[14] wen b, ström a, tasker a, et al. effect of silencing the two major tomato fruit pectin methylesterase isoforms on cell wall pectin metabolism[j]. plant biology, 2013, 15(6): 1025–1032. doi: 10.1111/j.1438-8677.2012.00714.x
[15] wang d d, yeats t h, uluisik s, et al. fruit softening: revisiting the role of pectin[j]. trends in plant science, 2018, 23(4): 302–310. doi: 10.1016/j.tplants.2018.01.006
[16] wei y y, zhou d d, wang z j, et al. hot air treatment reduces postharvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes[j]. journal of the science of food and agriculture, 2018, 98(6): 2105–2112. doi: 10.1002/jsfa.8692
[17] sogvar o b, saba m k, emamifar a. aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit[j]. postharvest biology and technology, 2016, 114: 29–35. doi: 10.1016/j.postharvbio.2015.11.019
[18] du s l, zhang j h, chen s y, et al. the combined effect of 1-methylcyclopropene and citral suppressed postharvest grey mould of tomato fruit by inhibiting the growth of botrytis cinerea[j]. journal of phytopathology, 2019, 167(2): 123–134. doi: 10.1111/jph.12780
[19] gutiérrez d r, chaves a r, rodríguez s d c. use of uv-c and gaseous ozone as sanitizing agents for keeping the quality of fresh-cut rocket (eruca sativa mill)[j]. journal of food processing and preservation, 2017, 41(3).
[20] 金鵬, 王靜, 朱虹, 等. 果蔬采后冷害控制技術(shù)及機(jī)制研究進(jìn)展[j]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 35(5): 167–174.
[21] wang l, shan t m, xie b, et al. glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms[j]. food chemistry, 2019, 272: 530–538. doi: 10.1016/j.foodchem.2018.08.085
[22] liu y f, yang x x, zhu s j, et al. postharvest application of meja and no reduced chilling injury in cucumber (cucumis sativus) through inhibition of h2o2 accumulation[j]. postharvest biology and technology, 2016, 119: 77–83. doi: 10.1016/j.postharvbio.2016.04.003
[23] 張敏, 解越. 采后果蔬低溫貯藏冷害研究進(jìn)展[j]. 食品與生物技術(shù)學(xué)報(bào), 2016, 35(1): 1–11. doi: 10.3969/j.issn.1673-1689.2016.01.001
[24] 周靖翔, 閔德棟, 李嬌卓, 等. 茉莉酸甲酯在果蔬采后冷害控制中的應(yīng)用研究進(jìn)展[j]. 植物生理學(xué)報(bào), 2019, 55(10): 1419–1426.
[25] huang q h, qian x c, jiang t j, et al. effect of eugenol fumigation treatment on chilling injury and cbf gene expression in eggplant fruit during cold storage[j]. food chemistry, 2019, 292: 143–150. doi: 10.1016/j.foodchem.2019.04.048
[26] 范林林, 高元惠, 高麗樸, 等. 1-mcp處理對西葫蘆冷害和品質(zhì)的影響[j]. 食品工業(yè)科技, 2015, 36(17): 330–334.
[27] 李美玲, 林育釗, 王慧, 等. 能量狀態(tài)在果蔬采后衰老中的作用及其調(diào)控研究進(jìn)展[j]. 食品科學(xué), 2019, 40(9): 290–295.
[28] zhang l, kou x y, huang x, et al. peach-gum: a promising alternative for retarding the ripening and senescence in postharvest peach fruit[j]. postharvest biology and technology, 2020, 161: 111088. doi: 10.1016/j.postharvbio.2019.111088
[29] 劉順枝, 孫茹, 江月玲, 等. 貯藏溫度對火龍果品質(zhì)和衰老變化的影響[j]. 食品科學(xué), 2013, 34(12): 336–340. doi: 10.7506/spkx1002-6630-201312070
[30] fan l l, shi j y, zuo j h, et al. methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (solanum melongena l.) fruit[j]. postharvest biology and technology, 2016, 120: 76–83. doi: 10.1016/j.postharvbio.2016.05.010
[31] 王慧, 陳燕華, 林河通, 等. 紙片型1-mcp處理對采后安溪油柿果實(shí)活性氧代謝和細(xì)胞膜透性的影響[j]. 熱帶作物學(xué)報(bào), 2018, 39(11): 2283–2289. doi: 10.3969/j.issn.1000-2561.2018.11.025
[32] wang h, chen y h, lin h t, et al. 1-methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in anxi persimmon fruit during storage[j]. international journal of biological macromolecules, 2020, 151: 723–729. doi: 10.1016/j.ijbiomac.2020.02.146
[33] lin y x, lin h t, chen y h, et al. the role of ros-induced change of respiratory metabolism in pulp breakdown development of longan fruit during storage[j]. food chemistry, 2020, 305: 125439. doi: 10.1016/j.foodchem.2019.125439
[34] 顧采琴, 朱冬雪, 李棋. 草莓果實(shí)采后nad激酶活性與nad(h)、nadp(h)含量及活性氧代謝的關(guān)系[j]. 中國農(nóng)業(yè)科學(xué), 2007, 40(2): 352–357. doi: 10.3321/j.issn:0578-1752.2007.02.019
[35] 陳夢茵, 林河通, 洪延康, 等. dnp和atp對phomopsis longanae chi侵染的龍眼果實(shí)病害發(fā)生、能荷狀態(tài)和呼吸代謝的調(diào)控[j]. 現(xiàn)代食品科技, 2015, 31(5): 49–58, 89.
[36] 林毅雄, 林藝芬, 陳藝暉, 等. 過氧化氫對采后龍眼果實(shí)貯藏品質(zhì)的影響[j]. 食品科學(xué), 2016, 37(22): 244–248. doi: 10.7506/spkx1002-6630-201622037
[37] 劉佩, 徐欣欣, 劉同信, 等. 過氧化氫處理對采后'黃冠'梨果皮褐變及果實(shí)品質(zhì)的影響[j]. 食品科學(xué), 2017, 38(19): 241–247. doi: 10.7506/spkx1002-6630-201719039
[38] he y z, li z r, tan f q, et al. fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance[j]. food chemistry, 2019, 292: 314–324. doi: 10.1016/j.foodchem.2019.04.009
[39] 孔祥佳.熱空氣處理誘導(dǎo)采后橄欖果實(shí)抗冷性機(jī)理的研究[d].福州: 福建農(nóng)林大學(xué), 2011.
[40] 孔祥佳, 林河通, 鄭俊峰, 等. 熱空氣處理誘導(dǎo)冷藏橄欖果實(shí)抗冷性及其與膜脂代謝的關(guān)系[j]. 中國農(nóng)業(yè)科學(xué), 2012, 45(4): 752–760. doi: 10.3864/j.issn.0578-1752.2012.04.016
[41] lin y f, lin h t, lin y x, et al. the roles of metabolism of membrane lipids and phenolics in hydrogen peroxide-induced pericarp browning of harvested longan fruit[j]. postharvest biology and technology, 2016, 111: 53–61. doi: 10.1016/j.postharvbio.2015.07.030
[42] lin y x, lin h t, chen y h, et al. hydrogen peroxide-induced changes in activities of membrane lipids-degrading enzymes and contents of membrane lipids composition in relation to pulp breakdown of longan fruit during storage[j]. food chemistry, 2019, 297: 124955. doi: 10.1016/j.foodchem.2019.124955
[43] sabban-amin r, feygenberg o, belausov e, et al. low oxygen and 1-mcp pretreatments delay superficial scald development by reducing reactive oxygen species (ros) accumulation in stored 'granny smith' apples[j]. postharvest biology and technology, 2011, 62(3): 295–304. doi: 10.1016/j.postharvbio.2011.06.016
[44] 陳蓮, 王璐璐, 林河通, 等. 1-mcp延緩采后中國臺(tái)灣青棗果實(shí)衰老及其與能量代謝的關(guān)系[j]. 熱帶作物學(xué)報(bào), 2017, 38(1): 175–182. doi: 10.3969/j.issn.1000-2561.2017.01.031
[45] li l, lv y f, guo y y, et al. respiratory pathway metabolism and energy metabolism associated with senescence in postharvest broccoli (brassica oleracea l. var. italica) florets in response to o2 /co2 controlled atmospheres[j]. postharvest biology and technology, 2016, 111: 330–336. doi: 10.1016/j.postharvbio.2015.09.032
[46] lin y f, lin y x, lin h t, et al. hydrogen peroxide-induced pericarp browning of harvested longan fruit in association with energy metabolism[j]. food chemistry, 2017, 225: 31–36. doi: 10.1016/j.foodchem.2016.12.088
[47] lin y x, lin h t, lin m s, et al. hydrogen peroxide reduced atpase activity and the levels of atp, adp, and energy charge and its association with pulp breakdown occurrence of longan fruit during storage[j]. food chemistry, 2020, 311: 126008. doi: 10.1016/j.foodchem.2019.126008
[48] 朱立保, 劉海河, 張彥萍, 等. 蕓苔素內(nèi)酯對厚皮甜瓜坐果節(jié)位葉片衰老及葉綠素?zé)晒馓匦缘挠绊慬j]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 37(4): 58–62.
[49] song m b, wu s j, shuai l, et al. effects of exogenous ascorbic acid and ferulic acid on the yellowing of fresh-cut chinese water chestnut[j]. postharvest biology and technology, 2019, 148: 15–21. doi: 10.1016/j.postharvbio.2018.10.005
[50] martínez-ortiz m a, palma-rodríguez h m, montalvo-gonzález e, et al. effect of using microencapsulated ascorbic acid in coatings based on resistant starch chayotextle on the quality of guava fruit[j]. scientia horticulturae, 2019, 256: 108604. doi: 10.1016/j.scienta.2019.108604
[51] lo'ay a a, dawood h d. tolerance of 'baladi' mandarin fruits to cold storage by postharvest pectin/pva blend with ascorbic acid treatment[j]. scientia horticulturae, 2019, 256: 108637. doi: 10.1016/j.scienta.2019.108637
[52] lo'ay a a, el-khateeb a y. antioxidant enzyme activities and exogenous ascorbic acid treatment of 'williams' banana during long-term cold storage stress[j]. scientia horticulturae, 2018, 234: 210–219. doi: 10.1016/j.scienta.2018.02.038
[53] ojeda g a, sgroppo s c, martín-belloso o, et al. chitosan/tripolyphosphate nanoaggregates enhance the antibrowning effect of ascorbic acid on mushroom slices[j]. postharvest biology and technology, 2019, 156: 110934. doi: 10.1016/j.postharvbio.2019.110934
[54] wang k k, xu f, cao s f, et al. effects of exogenous calcium chloride (cacl2) and ascorbic acid (asa) on the γ-aminobutyric acid (gaba) metabolism in shredded carrots[j]. postharvest biology and technology, 2019, 152: 111–117. doi: 10.1016/j.postharvbio.2019.03.005
[55] lin y f, lin y x, lin h t, et al. inhibitory effects of propyl gallate on membrane lipids metabolism and its relation to increasing storability of harvested longan fruit[j]. food chemistry, 2017, 217: 133–138. doi: 10.1016/j.foodchem.2016.08.065
[56] 林藝芬, 林河通, 陳藝暉, 等. 棓酸丙酯處理對采后龍眼果實(shí)的保鮮效應(yīng)[j]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2013, 44(4): 157–162.
[57] 李漢良. 沒食子酸丙酯對新高梨軟化和褐變的影響[j]. 農(nóng)產(chǎn)品加工·學(xué)刊, 2011(9): 51–53. doi: 10.3969/jissn.1671-9646(x).2011.09.013
[58] 莫億偉, 鄭吉祥, 李偉才, 等. 外源抗壞血酸和對荔枝保鮮效果的影響[j]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(3): 363–368.
[59] li t t, wu q x, zhou y j, et al. l-cysteine hydrochloride delays senescence of harvested longan fruit in relation to modification of redox status[j]. postharvest biology and technology, 2018, 143: 35–42. doi: 10.1016/j.postharvbio.2018.04.011
[60] tappi s, tylewicz u, romani s, et al. study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage[j]. innovative food science & emerging technologies, 2017, 39: 148–155.
[61] shao p, niu b, chen h j, et al. fabrication and characterization of tea polyphenols loaded pullulan-cmc electrospun nanofiber for fruit preservation[j]. international journal of biological macromolecules, 2018, 107: 1908–1914. doi: 10.1016/j.ijbiomac.2017.10.054
[62] lan w j, zhang r, ahmed s, et al. effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries[j]. lwt-food science and technology, 2019, 113: 108297. doi: 10.1016/j.lwt.2019.108297
[63] su z h, hu m j, gao z y, et al. apple polyphenols delay senescence and maintain edible quality in litchi fruit during storage[j]. postharvest biology and technology, 2019, 157: 110976. doi: 10.1016/j.postharvbio.2019.110976
[64] zhang z k, huber d j, qu h x, et al. enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols[j]. food chemistry, 2015, 171: 191–199. doi: 10.1016/j.foodchem.2014.09.001
[65] chen j, li f f, li y x, et al. exogenous procyanidin treatment delays senescence of harvested banana fruit by enhancing antioxidant responses and in vivo procyanidin content[j]. postharvest biology and technology, 2019, 158: 110999. doi: 10.1016/j.postharvbio.2019.110999
來源:《亞熱帶農(nóng)業(yè)研究》
上一個(gè):智能健康小屋自助體檢一體機(jī)
下一個(gè):國際長途物流價(jià)格 國際長途物流價(jià)格查詢

沸騰干燥機(jī)的特色與三維混合機(jī)優(yōu)勢
深圳用國際快遞發(fā)美國FBA空加派哪家時(shí)效快
空運(yùn)方式下的信用證風(fēng)險(xiǎn)防范
賣家如何選擇FBA頭程專線?
震驚:貨輪被劫,船員遭綁架
2022最新貨拉拉企業(yè)版助力深耕FBA頭程市場門對門 3-5天遞快遞
上海美國海運(yùn)價(jià)格(美國海運(yùn)價(jià)格表)
工程造價(jià)審計(jì)的流程與技巧
企業(yè)網(wǎng)站是什么?怎么建立企業(yè)網(wǎng)站呢?
反應(yīng)釜注意事項(xiàng)不容小視!